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Abstract 

It is shown that quadratic constraints are compatible with the geometric integrability scheme of 
the multidimensional quadrilateral lattice equation. The corresponding Ribaucour-type reduction 
of the fundamental transformation of quadrilateral lattices is found as well, and superposition of the 
Ribaucour transformations is presented in the vectorial framework. Finally, the quadratic reduction 
approach is illustrated on the example of multidimensional circular lattices. © 1999 Elsevier Science 
B.V. All rights reserved. 
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I. Introduction 

The connection between differential geometry and modern theory of integrable partial 

differential equations has been observed many times [2,20,34,35]. Actually, a lot of  basic 

integrable systems, like the sine-Gordon, Liouville, Lam6 or Darboux equations, were 

studied by distinguished geometers of  the XIXth century [1,9,26] (see also [21,27]). 

It turns out that many integrable systems of  a geometric origin are reductions of  the 

Darboux equations, which describe submanifolds in ~M parameterized by conjugate coor- 

dinate systems (conjugate nets) [9]. The Darboux equations were rediscovered and solved, 

in the matrix generalization, in [37] using the ~-dressing method (for another approach to 

the Darboux equations see [22,23] and references therein). More recently it was shown in 

[19] that classical transformations of  the conjugate nets, which are known as the Laplace, 
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LEvy, Combescure, radial and fundamental transformations [21,27], provide an interest- 
ing geometric interpretation of the basic operations associated with the multicomponent 
Kadomtsev-Petviashvilii hierarchy. 

The distinguished reduction of the Darboux equations is given by the Lame equations 
[1,9,26], which describe orthogonal systems of coordinates; these equations were solved 
recently in [36]. The reduction of the fundamental transformation compatible with the 
orthogonality constraint is provided by the Ribaucour transformation [ 1 ], which vectorial 
generalization was constructed in [28]. 

During last few years the connection between geometry and integrability was observed 
also at a discrete level [4-6,15]. In particular, in [16] it was shown that the integrable 
discretization of the conjugate nets is provided by multidimensional quadrilateral lattices 
(MQL), i.e., maps x : 7/N ~ ~ M  with all the elementary quadrilaterals planar (see also 
[13,32]). The geometrically distinguished reduction of quadrilateral lattices are multidi- 
mensional circular lattices (MCL), for which all the elementary quadrilaterals should be 
inscribed in circles [3,8]. The circular lattices provide the integrable discretization of the 
orthogonal coordinate systems of LamE. In [8,17] it was demonstrated that the circularity 
constraint is compatible with the geometric and analytic integrability scheme of MQL and 
provides an integrable reduction of the corresponding equations. 

Also the Darboux-type transformations [30] of quadrilateral lattices have been studied 
from various points of view [13,18,25,29]. In [18] the general theory of transformations 
applicable to any quadrilateral lattice was presented, and all the classical transformations 
of conjugate nets have been generalized to a discrete level. In [25] there was found, among 
others, the (discrete analog of the) Ribaucour transformation compatible with the circularity 
constraint. 

In conclusion of [8] there were given some arguments supporting the conjecture that a 
more general than circularity, but still quadratic,  constraint imposed on the quadrilateral 
lattice preserves their integrability scheme. In the present paper we develop this observation 
and prove the general theorem about the integrability of quadratic reductions of the MQL 
equation (Section 2). The corresponding Ribaucour reduction of the fundamental (binary 
Darboux) transformation is found in Section 3, where we present also superposition of the 
Ribaucour transformations in the vectorial framework. Section 4 provides an exposition of 
the multidimensional circular lattices and their Ribaucour transformation from the quadratic 
reduction point of view. 

2. Integrability of quadratic reductions 

We recall that planarity of elementary quadrilaterals of the lattice x : Z N ~ R M can be 
expressed in terms of the Laplace equations [13,16]: 

A i A j x = ( T i A i j ) A i x - F ( T j A j i ) A j x ,  i =fi j ,  i , j  = 1 . . . . .  N ,  (I) 

where the coefficients Aij, for N > 2, due to the compatibility condition of (1), satisfy the 
MQL equation [7,16]: 
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Akaij  = (Tjajk)ai j  + (Tkakj)aik - (TkAii)aik, i • j 5/: k ~ i 
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(2) 

in the above formulas 7~ is the shift operator in the ith direction of the lattice and Ai = Ti - 1 
is the corresponding partial difference operator. 

In this paper we study latticesx contained in a quadric hypersurface Q of R M , N < M -  1. 
This additional constraint implies that the lattice points x satisfy the equation of the quadric 

Q, which we write in the form 

xtQx + atx q- c = 0; (3) 

here Q is a symmetric matrix, a is a constant vector, c is a scalar and t denotes transpositon. 

Let us recall (see [ 16] for details) that the construction scheme of a generic N-dimensional 

quadrilateral lattice (N > 2) involves the linear operations only, and is a consequence of 
the planarity of elementary quadrilaterals (or the Laplace equations (1)). 

Theorem 1. The point Ti Tj Tkx of the lattice is the intersection point of the three planes 
Vjk (T i x )  = (Tix, TiTjx ,  TiTkx), ~k/ik(Tjx) = (~X, T/Tjx, TjTkx) and ~/ij(TkX) = (Tkx, 
Ti Tkx, T i Tkx) in the three-dimensional space Vijk (x) = (x, Tix, ~.x, Tkx). 

Remark. The above construction scheme is the geometrical counterpart of MQL equations 
(2) and it is called, therefore, the geometric integrability scheme. It implies, in particular, 
that the lattice x is completely determined once a system of initial quadrilateral surfaces 
has been given [16]. 

As it was proposed in [8], a geometric constraint in order to be integrable must "propagate" 
in the construction of the MQL, when satisfied by the initial surfaces. The (geometric) 

integrability of the quadratic reductions is an immediate consequence of the following 

classical eight points theorem (see, for example [31, pp. 420, 424]). 

Lemma  1. Given eight distinct points which are the set of intersections of three quadric 
surfaces, all quadrics through any subset of seven of the points must pass through the eight 
point. 

Proposition 1. Quadratic reductions of quadrilateral lattices are compatible with geomet- 
ric integrability scheme of the multidimensional quadrilateral lattice equation. 

Proof. Since the construction of the MQL for arbitrary N _> 3 can be reduced to the 
compatible construction of three-dimensional quadrilateral lattices [16], it is enough to 
show that the constraint is preserved in a single step described in Theorem 1. We must show 
that if the seven points x, Tix, Tjx, Tkx, Ti 7~x, 7~ Tkx and Tj Tkx belong to the quadric Q, 
then the same holds for the eight point Ti 7~ Tkx as well. Denote by Qijk (X) the intersection 
of the quadric Q with the three-dimensional space ~/ijk (X), there are two possibilities: 

(i) Qijk(X) = Vi jk(X) ,  or 
(ii) Qijk (x) C Vijk  (X) is a quadric surface. 
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Since in the first case the conclusion is trivial, we concentrate on the second point. Recall 
that two planes in Vij k c a n  be considered as a degenerate quadric surface (in this case 
the quadratic equation splits into two linear factors). Application of Lemma 1 to three 
(degenerate) quadfic surfaces ~/ij (X) I.J Vij  (TkX), Vi k (X) I J Vi k (Tjx),  ~/jk (X) I.J Vjk ( ~ x )  and 
to the fourth o n e  Qijk(X) concludes the proof. [] 

Corollary 1. The above result can be obviously generalized to quadrilateral lattices in 

spaces obtained by intersection of  many quadric hypersurfaces. Since the spaces of constant 

curvature, Grassmann manifolds and Segr( or Veronese varieties can be realized in this 

way [24], the above results can be applied, in principle, to construct integrable lattices in 

such spaces as well. 

3. Ribaucour transformation 

In this section we suitably adapt the fundamental transformation of quadri lateral lattices 
in order to preserve a given quadratic constraint. Such reductions are called, in the continuous 
context, the Ribaucour transformations (see, for example, [21, Chapter X]). 

3.1. Ribaucour reduction of the fundamental transformation 

We first recall (for details, see [18]) the basic results concerning the fundamental trans- 
formation of quadrilateral lattices. 

Theorem 2. The fundamental transformation U(x) of  the quadrilateral lattice x is given by 

.T(x) = x - ~cX¢, (4) 

where: 

(i) ep : y_N ___> ~ is a new solution of  the Laplace equation (1) of the lattice x 

(ii) xc  is the Combescure transformation vector, which is a solution of  the equations 

AiXc = (~cr i )Aix ,  (5) 

where, due to the compatibility of  the system (5) the functions cri satisfy 

Ajai = Aij(~crj  - ~¢ri) , i ~ j;  (6) 

moreover, 

(iii) ~bc is a solution, corresponding to ~p, of  the Laplace equation of  the lattice xc, i.e., 

Ai~C = (Tic~i)Ai~. (7) 

Remark .  Notice that, given xc  and 4>, Eq. (7) determines cpc uniquely, up to a constant of  
integration. 
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At this point we also recall (see [ 18] for details) that an N parameter family of  straight lines 

in R M is called N-dimensional congruence if any two neighbouring lines l and T/l, i = 

1 . . . . .  N of the family are coplanar. The N-dimensional quadrilateral lattice x and N- 
dimensional congruence are called conjugate, i fx (n )  c [(n), for every n 6 yN. 

Corol la ry  2. The N parameter family of lines l = (x, 5t'(x)) forms a congruence. 
called congruence of the transformation. Both lattices x and ~T(x) are conjugate to the 
congruence I. 

Theorem 2 states that in order to construct the fundamental transformation of the lattice 

x we need three new ingredients: 49, xc  and 49c. In looking for the Ribaucour reduction of 
the fundamental transformation we can use the additional information: 

(i) the initial lattice x satisfies the quadratic constraint (3), 

(ii) the final lattice 7~(x) should satisfy the same constraint as well. 

This should allow to reduce the number of  the necessary data and, indeed, to find the 
Ribaucour transformation it is enough to know the Combescure transformation vector xc  

only. 

Proposi t ion 2. The Ribaucour reduction Tg(x) of the fundamental transformation of the 
quadrilateral lattice x subjected to quadratic constraint (3) is determined by the Combe- 
seure transformation vector xc, provided that xc is not anihilated by the bilinear form Q 
of the constraint 

xtc Qxc ~ O. (8) 

The functions 49 and 49c entering in formula (4) are then given by 

49 = 2x t Qxc + atxc, (9) 

49c = xtc Qxc. (10) 

Proof.  Application of the  partial difference operator Ai tothe quadratic constraint (3) gives 

( Tixt) Q( zlix) q- xt Q( Ai x) -k- at ( Aix) = 0. (1 l) 

Applying A j, j ~ i to Eq. (11) and making use of Eqs. (1) and (11), we obtain 

(TiAjxt)Q(TjAi x) + (Ajxt)Q(Aix)(1 + TiAii + TjAji) = O. (12) 

We recall (see [ 18] for details) that, given Combescure transformation vector xc ,  it satisfies 

the Laplace equation: 

i • j ,  i , j  = 1 . . . . .  N. (13) Ai Ajx C = ( ~ A C ) Aixc + (Tj AC ) Ajxc,  

Tjaj Aij. (14) Ac  = ai 

with 
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We will show that the function ¢c, defined in (10), satisfies the Laplace equation (13) of 
the lattice xc. Indeed, the difference operator A i acting on ¢c gives 

Ai~ C = (~Xtc )  a (  Aixc) + Xtc a (  Aixc).  

Applying A j,  j # i, to the above equation and making use of Eq. (13) we obtain 

Ai AjdPC -- ( Ti A C ) AiCbc -- (7~AC)Aj$c 

= (~Ajx tc)Q(TjAixc)  + (Ajxtc)Q(Aixc)(1 + TiA C. + 7~AC). (15) 

Making use of Eqs. (5) and (12) we transform Eq. (15) to the form 

Ai A j¢  c - (T/AC)Ai¢c - (TjAC)Aj¢c 

= (Ajxt)Q(Aix)[(Ticri)(Tjo'j)(1 + TiA c + TjA c )  

-- (TiTjai)(TiTjaj)(1 + TiAij + T j A j i ) ] ;  

the expression in square brackets vanishes due to (14) and (6), which shows that the function 
¢c does satisfy the Laplace Eq. (13). 

It is easy to see that in order to satisfy constraint (3) the function ¢ must be defined as in 
(9). Moreover, by direct verification one can check that ¢ and ¢c are connected by Eq. (7), 
which also implies that ¢ satisfies the Laplace Eq. (1) of the lattice x. [] 

Remark. Condition (8) is satisfied, in particular, when the quadric has non-degenerate 

and definite bilinear form. 

Let us discuss the geometric meaning of the algebraic results obtained above. The con- 
gruence l of the fundamental transformation is defined once the Combescure transformation 
vector is given; moreover, any generic congruence conjugate to x can be obtained in this 
way (for details, see [ 18]). The points of the transformed lattice ~(x)  belong to the lines of 
the congruence and to the quadric Q. Therefore, we can formulate the following analog of 
the Ribaucour theorem [21], which also follows directly from Lemma 1. 

Proposition 3. I f  a congruence is conjugate to a quadrilateral lattice contained in a 
quadric, and if each line of the congruence meets the quadric just in two distinct points, then 
the second intersection of the congruence and the quadric is also a quadrilateral lattice 
conjugate to the congruence. 

Remark. I f  a line and a quadric hypersurface have non-trivial intersection, then they 
have exactly two points in common (counting with multiplicities and points at infinity) or, 
alternatively, the line is contained in the quadric. 

3.2. Superposition of Ribaucour transformations 

In this section we consider vectorial Ribaucour transformations, which are nothing else 
but superpositions of the Ribaucour transformations with appropriate transformation data. 
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We first recall [ 18,29] the necessary material concerning the vectorial fundamental trans- 

formations. Consider K > 1 fundamental transformations Uk (x), k = 1 . . . . .  K, of  the 

quadrilateral lattice x C R M, which are built from K solutions 4~ k, k = 1 . . . . .  K of the 

Laplace equation of the lattice x and K Combescure transformation vectors xc.k, where 

AiXc , k  = ( ~ r r i . k ) A i x ,  i = 1 . . . . .  N,  k = 1 . . . . .  K, 

and ¢i,k satisfy equations 

Ajf f i ,  k = A i j (T j ( r j ,  k - Tjf f i ,k)  , i # j ;  

finally, we are given also K functions ~b~, k, which satisfy 

Ai4~.k = (T,~i.k)Ai4~ k. 

We arrange functions 4~ k in the K component vector ~b = (~b 1 . . . . .  4~K) t, similarily, we 

arrange the Combescure transformation vectors xf,k into M x K matrix Xc = (xc. I . . . . .  

xc.K); moreover, we introduce the K × K matrix ~ c  = (4~c, l . . . . .  q~f,K), whose columns 
are the K component vectors ~bc.k (~b~,k . . . . .  K t = 4~c,k) being the Combescure transforms 

of,~ 

Ai~gC. k = (TirYi,k)Ai(~. (16) 

Remark. The diagonal part of ~ c  is fixed by the initial fundamental transformations. Ib 

find the off-diagonal part of  ~ c  we integrate Eq. (16) introducing K (K - 1) arbitra~ 

constants. 

One can show that the vectorial fundamental transformation .Tr(x) of the quadrilateral 

lattice x, which is defined as 

YZ(x) = x - X f ~ l  fb, (17) 

is again quadrilateral lattice. Moreover, the vectorial transformation is superposition of the 

fundamental transformations 

- T ' ( X ) = ( ~ l o ~ k 2 o ' " o - U k x ) ( X ) ,  k i ~ k i  for i # j ,  

and does not depend on the order in which the transformations are taken. In applying the 

fundamental transformations at the intermediate stages the transformation data should be 

suitably transformed as well. To prove the superposition and permutability statements it is 

important to notice that the following basic fact holds: 

Lemma 2. Assume the following splitting of the data of  the vectorial fundamental trans- 

formation 

q~ = q~(2) ' XC ~- (Xc(l) ,Xc(2)) ,  ~/~c ---- ~ ~(c2()1) =c(2)d5(2) ' 
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associated with partition K = KI + K2. Then the vectorial fundamental transformation 
9~(x ) is equivalent to the following superposition of vectorial fundamental transformations: 

_ ~ ( 1 )  . 
1. Transformation .~'(l)(x) with the data ~(1), Xc(1), U'c(1). 

• .~'<1) (X) ---- X -- XC<I) ((/~(1~1))-1 q~(l). 

2. Application on the result obtained in point 1, transformation .~'(2) with the data trans- 
formed by the transformation 9~(1 ) as well 

• ~'(2) (,~'(1) (X)) = .~'(1) (X) -- -~'(1) (Xc(2))(.~'(1) (~)(202)))-1.~'(I) (q~)(2)), 

where: 

~'(1) (Xc<2)) = XC(2) -- XC(1) (('~(cl~l))-1 ~C(2)'(1) (18) 

,~.(1)(~(2)) th(2)dB(2) ((~,(1) ~-lth(1 ) (19) 
= "e" ~C(I)~ C(I): "*" ' 

(2) _,,:(2) fiB(2) /d~(1) ~-lfl~(1) (20) 
"~"(1)(~C(2)) = K°'C(2) -- ~C(I) ' ,~C(I)- '  ~C(2)" 

C o r o l l a r y  3. For any L = 0 . . . . .  K - 2, the points x' = (JCk I o . . .  o JCkL )(X), JCkL +t (X'), 
~'kL+2(Xt),  (~'kL+l 0 ~'kL+2)(X t) are coplanar. 

R e m a r k .  The K ( K - 1) constants of integration in the off-diagonal part of ~ c  are used 
to construct "initial quadrilaterals", i.e., the integration constants in dp~, k and <bk e(k # £) 
fix the position of (Uk o .~e)(x) on the plane passing through x, ~k(x) and Ue(x). The rest 
of the construction is by linear algebra and is the direct consequence of the geometric 
integrability scheme (Theorem 1). Any point x of the initial lattice, together with its images 
under all possible superpositions ~kl (X) . . . . .  (Ukl o fkz)(X) . . . . .  (5~ki o . . .  o 5rkx)(X), 

form a network of the type of K-hypercube. Different paths from x to the opposite diagonal 
vertex 9~(x) represent various ordering of the fundamental transformations in the final 
superposition. 

To find the Ribaucour  reduction of  the vectorial fundamental  transformation we can use 
results of  Section 3.1 to obtain. 

(pk = 2X t QXc,k + atxc,k, (21) 

~ k  _ X t C,k --  c,kQXC,k" (22) 

Eqs. (16) and (21) lead to 

Ai(q~,  e + ~b~,k) = (T/x~, k +xt f ,k)a(AiXe)+ (Tixtf,e +xtf,e)a(AiXk), 

which implies that 

qsk, e + cb~.k = 2xtc,k Qxc,e; (23) 

the constant of  integration was found f rom condition (~k  o ~e)(X) C Q. 
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Proposi t ion 4. The vectorial Ribaucour transformation 7~, i.e., the reduction of the vec- 
torial fundamental transformation (17) compatible with quadratic constraint (3), is given 
by the following constraints." 

q5 t = 2x t QXc + atXc, 

~ c  + ~tc = 2X~ aXE. 

(24) 

(25) 

Proof.  Eqs. (24) and (25) are just compact forms of Eqs. (21)-(23), which assert that, if 

x C Q then ~k(X) C Q, (~k o T~e)(x) C Q as well. Moreover, since Corollary 3 still 
holds, then from Lemma 1 it follows that, at each step of the superposition, the lattice 
(7~k~ o • • • o 7~kL)(X) is also contained in the quadric, which implies the stated result. 

The algebraic verification that "R,(x) belongs to the quadric Q is also immediate. Using 
condition (3) we obtain 

"~(x) t Q~Cx) + at'R.(x) q- c 

= ~b t (~t C)-IX~ a X c ~ c  1 qb - x t a X c ~ c l O  
t t - 1  t t -I 

- q ~ ( ~ c )  X c Q x - a X c ~ c  q~, 

which vanishes due to Eqs. (24) and (25) and the following identity: 

a tXc~clq~ : ~ b t ( ~ ) - l X ~ a .  [] 

Notice that proving geometrically the above proposition we proved also the analog of 
Lemma 2 (which we would like to prove algebraically as well). 

Proposition 5. Assume the following splitting of the data of the vectorial Ribaucour trans- 
formation: 

q~ = q~(2) ' Xc = (Xc(I),Xc(2)), ~ c  = L ~i~(c2()1) ~(2) , 
C(2) 

(26) 

associated with partition K = KI + K2. Then the vectorial Ribaucour transformation 
7~(x) is equivalent to the following superposition of vectorial Ribaucour transformations." 

dS(1) 1. Transformation 7~(1)(x ) with the data ~b ~1), Xco) ,  ~c{1)" 
2. Application on the result obtained in point 1, the transformation 7~{2 ) with the data 

(2) (2) 7~{1}(Xc{2}), "R.{I)(~/iC(2)), "R-(l)(~b ) given by T~- analogs offormulas (18)-(20). 

Proof.  We have to show that the data of both transformations satisfy constraints (24) and 
(25). Since the data (26) do satisfy the constraints we have: 

q~t(i) : 2xtQXc(i) +atXc(i), i : 1,2, (27) 

~(i) (ds(i) .~t 
c{i) + ~=c(iv = 2Xtc(i)QXc( i)' (28) 

~(1) (di(2) ~t t 
c{2) + ~ c c I ) ,  = 2X~)QXc(2 )  , (29) 
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this leads immediately to conclusion that the transformation 1 is the Ribaucour transforma- 
tion. Verification that the data of the transformation of point 2 satisfy constraints (24) and 
(25) can be done by straightforward algebra. [] 

Corollary 4. Obviously, one can reverse the order o f  the two transformations (keeping 

in mind suitable transformation of  their data). Moreover, the above result implies that 

assuming a general splitting K = Kl + • • • + Kp  the final result does not depend on the 

order in which the transformations are made. 

We finally remark that recursive application of the fundamental transformations can be 
considered [18] as generating new dimensions of the quadrilateral lattice x. In this context, 
the Ribaucour transformations generate new dimensions of the lattice subjected to the 
quadratic constraint. This interpretation remains valid also in the limit from the quadrilateral 
latticex C Q to the multiconjugate netx c Q. Therefore, the Ribaucour transformations of 
multiconjugate nets subjected to quadratic constraints generate their natural, geometricaly 
distinguished, integrable discrete analogs. 

4. Circular lattices and their Ribaucour transformation 

In this section we illustrate the quadratic reduction approach on a simple example when 
the quadric Q is the M-dimensional sphere ~M C n :M+j of radius 1; the bilinear form Q 
is just the standard scalar product "." in the (M + 1)-dimensional Euclidean space (we add 
one dimension for convenience), and the quadratic constraint (3) takes the form x .  x = 1. 

4.1. Circular lattices and MObius geometry 

Given the point N 6 ~M (called the North Pole), consider the hyperplane q]- ~ [[:M 

bisecting the sphere and orthogonal to N. In standard way we define the stereographic 
projection St: ~M _.+ T U {oo} such that for all x = (x°,Yc) E ~M \ {N} ,y  = St(x) is the 
unique intersection point of the line (N, x} with the hyperplane 7: 

y = S t ( x ) - -  1 - x  ° '  

x = ( x 0 , ~ ) = S t _ , f y ) = ( [ y , 2 - 1  2y ) 
lY12+ 1' lyl 2 + 1 ' 

lyl 2 : y .  y, (30) 

and the North Pole is mapped into the infinity point oo. 
We recall the basic property of the stereographic projection [31] which is an important 

tool in the conformal (or MObius) geometry. 

Lemma 3. Circles o f  the sphere ~ M are mapped in the stereographic projection into circles 

or straight lines (i.e., circles passing through the infinity point) o f  the hyperplane ~ "~ ~_M. 
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Since the intersection of the plane of any elementary quadrilateral o f x  with the sphere 
5 M is a circle we have therefore: 

Proposition 6. Quadrilateral lattices in the sphere 5 M are mapped in the stereographic 
projection into multidimensional circular lattices in EM ; conversely, any circular lattice 
E M can be obtained in this way. 

R e m a r k .  The MObius geometry studies invariants of the transformations of Euclidean 
space, which map circles into circles. The MObius transformations act, therefore, within the 

space of circular lattices, like the projective transformations act within the space of quadri- 
lateral lattices (see [ 13, 16]). One can identify two circular lattices which are connected by 

a MObius transformation and study the circular lattices in the MObius geometr 3, approach. 

Proposition 6 provides a convenient characterization of the circularity constraint [25]. 

Theorem 3. The quadrilateral lattice y C F- M is circular if and only if the scalar function 

r = [y]2 is a solution of the Laplace equation of the latticey. 

Proof. The quadrilateral lattice y, satisfying the following system of Laplace equations: 

A i A j y =  (7~Bi j )Aiy+(TjBj i )Ajy ,  i ¢ j ,  i , j  : 1 . . . . .  N, (31) 

is circular if and only if the lattice x = S t - l (y )  C ~M C []zM+l is quadrilateral, i.e., x 

satisfies the Laplace Eq. (1). Obviously, if x is quadrilateral, then the E M part of  x, i.e., 

= 2y/([yl 2 + 1), satisfies Eq. (1) as well. 
The idea of the proof  is based on the following observation. We recall (see [16]) that, 

if y satisfies Eqs. (31), then, for any gauge function p, the new lattice ~ = p - l y  satisfies 

equations 

A i A j y  ~- (Tinij)Aiy -I- (TjBji)Ajy -Jr- CijY, i ~ j ,  i, j = 1 . . . . .  N, 

with 

B i j = ( T j p )  - l ( B i j - A j p ) ,  i s ~ j ,  i , j =  1 . . . . .  N, 

Cij ~-- (TiTjp) -1 (--AiAjp --}- (TiBij)Aip + (TjBij)Ajp).  

The rest of  the proof  follows from the fact that, in our case, p = ([yl 2 + 1)/2 and Cij = O. 
[] 

Remark. In the continuous context, the direct analog of Theorem 3 leads immediately to 
orthogonality of the intersecting conjugate coordinate lines [21]. The above characteriza- 
tion of circular lattices was postulated in [25] where its relation to geometry was made via 
another (equivalent)form of the circularity constraint [17]. 
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4.2. Ribaucour transformation of  the circular lattices 

We recall that the fundamental transformation ~'(y) of  the quadrilateral latticey generates 

quadrilateral strip with N-dimensional basis y and transversal direction b r (the quadrilat- 
erals {y, Tiy, ~(y) ,  TiOr(y)}, i = 1 . . . . .  N, are planar as well). W h e n y  is subjected to the 

circularity condition, then it is natural to consider only such fundamental transformations 

which act within the space of circular lattices [25]. 

Definition. The Ribaucour transformation R°fy)  of  the circular latt icey is a fundamental 

transformation such that all the strip with N-dimensional basis y and transversal direction 

R °  is made out of  circular quadrilaterals. 

Remark. It is not enough to define the Ribaucour transformation ~°(y)  of the circular 

lattice y as a fundamental transformation such that the transformed lattice is circular as 

well. 

In this section we present the Ribaucour transformation of multidimensional circular 
lattices from the point of  view of  quadratic reductions. Given circular lattice y C ~:M, 

we apply to x = S t - l (y )  C 5 g the Ribaucour transformation R,  defined in Section 3, 
obtaining the new lattice 7~(x) C ~ g .  Since, for points in the sphere, planarity implies 

circularity we conclude that the quadrilaterals St({x, 7~x, 7~(x), TiR(x)}) are circular. This 

observation, together with Lemma 3 and Proposition 6, leads to the following result. 

Proposition 7. The transformation St(R(St  - l  (y))) is a Ribaucour transformation of  the 

circular lattice y; conversely, any Ribaucour transformation ~ °  (y ) of  the circular lattice y 

can be obtained in this way. 

Corollary 5. One can extend, via formula (30), the stereographic projection St to the 

projection P of~_ M+I on ~ with the center in N. In this way the lines [ of  the congruence 

of  the transformation ~ are mapped into the lines [0 = p([) of the congruence of  the 

transformation T~ °. However, since the central projection does not preserve parallelism, it 

cannot be used directly to define the Combescure transformation vector yc, from given xc;  

one needs some rescaling. 

The rest of  this section is devoted to "algebraization" of  the above geometric observations. 
Consider the circular lattice y C []:M and its image in the M6bius sphere x = S t -  1 (y) C 

5 M. The Ribaucour transformation 7~(x) o f x  

2x . x c  
7Z(x) = x  - - x c  

xc  • xc  

is mapped in the steroegraphic projection to 

x°Y + £c 
St (~(x) )  = y - (2y.  :rc + x°([Yl 2 - 1)) 

Ix°y + £ c I  2" 
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One can directly verify that the function 

y c  = xcOy + £c ,  

is the Combescure  transformation vector of  the circular lattice y 

Aiy C : (Tioi)Aiy , 

with 
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T h e o r e m  4. The Ribaucour transformation of the circular lattice y C [M reads 

7Z°(y) = y -  ~cYC, 

where yc is the Combescure vector of y, ~Oc = lYcI 2, and @ is a solution of Eq. (32). 

(33) 

We would like to add a few remarks, which follow directly f rom the above reasoning, or 

can be easily verified. 

C o r o l l a r y  6. 

(i) When P is the projection defined in Corollary 5 then 

Yc 
e ( x  + x c )  - e(x )  - -  

(1 - x 0 - -  Xc0) " 

(ii) Then function ~l, can be written in the form 

= 2y 'Yc - (ly[2)c. (34) 

C o r o l l a r y  7 .  

(i) In the simplest case, when Yc = Y, then ~p = [y[ 2 - a, where a = const, and the 

corresponding Ribaucour transformation is the inversion 

Y 
T~°(y) = ~Ta(y ) = a [yl2. 

2or i 
Oi = xO + [y[2 +----~, 

and [YC [2 satisfies the Laplace equation of  the lattice Yc. Moreover,  the function 

1// = 2y "-~c -}-x°([Yl 2 - 1) ----- 2y 'Yc - X c  0( ~FI 2 -}- 1) 

satisfies equation 

1 
Ai~P = Ai([YcI 2) = Aiy" (]OYC +YC).  (32) 

LOi 

Putting these facts together we arrive to the following characterization of  the Ribaucour  

transformation of  circular lattices [25]. 
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(ii) 

(iii) 
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The Combescure transformation of a circular lattice is circular lattice as well 
The Ribaucour transformation can be decomposed into superposition of two Combes- 
cure transformations and inversion: 

y < > R°(y)  

c ~  ~ c  
2- 

Yc < > Z(yc)  = (TZ°fy))c. 

Remark. We recall that, in the case of the fundamental transformation of the quadrilateral 
lattice x, the Combescure transformation vectors xc and (5r(x))c (they define the same 
congruence but from the point of view of two different lattices) are related by the radial 
transformation [18]. 

For completness, we present also the vectorial Ribaucour transformation of  circular lat- 

tices. Consider K Ribaucour transformations of  the circular lattice y, which are defined by 

the Combescure vectors Yc,k and the corresponding transforms rc,k of  r = [yl2: 

A i ( Y C J ¢ ) = ( T i o i A ) A i ( Y )  

which we arrange in M × K matrix Yc = (Yc, J . . . . .  YC, K) and the row vector rc  ---- 
(rc, I . . . . .  rc,r).  The corresponding vector ~b (see Eq. (34)) has components 

Ck = 2y "YC,k - rc.k. 

Using Eqs. (33) and (32) and the condition that (7~ o 7~)(y)  belongs to the circle passing 

through the pointsy, R~ (y) and R~ (y), one can show that the components of  the matrix ~ c  

being defined as 

Ai¢k£  = (TiPi,g)Z~i~ k, 

satisfy condition 

c.~ + c,k = 2yc,k "Yc,e. 

Finally, we present the "circular" analogs of  Propositions 4 and 5 of  Section 3.2. 

Proposition 8. The vectorial Ribaucour transformation 77~ °, i.e., the reduction of the vec- 
torial fundamental transformation (17) compatible with the circularity constraint, is given 
by 

7~°(y) = y -- yck~ cl ¢ ,  

with the following constraints 

~,t = 2 y - Y c  - r c ,  

• 'c + ~ = 2rc .  rc. 
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Proof.  We have to show that the lattice 7~°(y) is circular, i.e., the function 17~'~(y)l 2 is a 

solution of the Laplace equation of  the lattice "R. ° (y). 

First notice that, since r satisfies the Laplace equation of the lattice y, the function 

"J~°(r) = r -- r c ~ c l ~ b  

is a solution of the Laplace equation of the lattice "R.° (y). By straightforward calculations 

we can verify that lT~°(y)l 2 = 7~°(r). [] 

Proposition 9. Assume the following splitting of the data of the vectorial Ribaucour trans- 
formation of the circular lattice y: 

) ( ) (  ) / ~  b(I) YC YC(1) YC(2) O C =  --c(1) ~C(2) l 
= ' ,1,.(2) ' fit(2) ~'C(2) ] ~b = ~ ( 2 )  , rc  rc(l) rc(2) ~ C ( I )  

associated with partition K = KI +K2.  Then the vectorial Ribaucour transformation 7~ ° (y ) 
is equivalent to the following superposition of vectorial Ribaucour transformations: 
1. Transformation 7~l)(y ) with the data Ycd), rc(l) ,  ~b (I), ~,d/ ~ C ( I ) "  
2. Application on the result obtained in point 1, transformation 7~(~2) with the data 7~'~:1) 

o o o ~.(2) 
(Yc (2 ) ) ,  7~-(1)( rc(2)) ,  " ]~( l ) (~b(2)) ,  7 ~ - ( 1 ) ( C ( 2 ) ) .  

Proof.  The reasoning is similar to that of the proof of Proposition 5. The only new ingredient 

is that the vector 

R~'l)(rc(2)) = rc(2) - r c d ) ( ~ O j ) )  
1 

C(2) 

consists of the Combescure transforms of the function 

.... (,) , - , ¢ ( 1 )  17~,)(y)l 2, [] 7~? ( ~ .  _d..r . ,  = r - r c ( 1 )  t ~ , C ( l )  ) = 

5. Conclusion and final remarks 

In this paper we presented the theory of quadrilateral lattices subjected to quadratic re- 
ductions. We concentrated our research on the geometric aspect of  the problem of quadratic 

reductions, i.e., our considerations concerned the lattice points, not the corresponding re- 
duction of the MQL equation (2). However, it is worth of  mentioning that in [25] it was 

shown that the circular lattices, for N = M = 3, can be described by the discrete BKP 

equation [ 10]. 
The (vectorial) Ribaucour-type transformations of  the quadrilateral lattices in quadrics, 

also constructed in the paper, allow to find new lattices from given ones. In particular, a lot 
of  intersecting examples can be constructed just applying the Ribaucour transformations to 
the trivial background lattices (see, for example [28,29]). Moreover, one may expect that 
suitable modification of the scheme, based on the 0- dressing method, applied in [17] to 
study circular lattices, can be used to study the quadratic reductions as well. 
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We conclude the paper with a few general remarks on integrable lattices. The multidimen- 

sional quadrilateral lattice seems to be quite general integrable lattice and other integrable 

lattices come as their reductions. Notice [13,16] that the quadrilateral lattices naturally 

"live" in the projective space. To obtain reductions of  the quadrilateral lattice one can fol- 

low the Cayley and Klein approach to subgeometries of the projective geometry, which 

was successfuly applied in [11,12] to the (continuous) Toda systems. The results of  the 

present paper can be considered as the basic tool to construct integrable lattices in spaces 

obtained by intersection of  quadrics. As a particular example, we demonstrated here the 

close connection of  the circular lattices and the MSbius geometry. 

Another way to obtain the integrable reductions of  the quadrilateral lattices (and the 

corresponding reductions of Eq. (2)) can be achieved by imposing on the lattice special 

symmetry conditions. These additional requirements may allow for dimensional reduction 

of  the geometric integrability scheme (see examples and discussion in [ 14]). In particular, the 

discrete isothermic surfaces [5], or even the discrete analogs of  the holomorphic functions 

(see, for example [33] and references therein), can be considered as further reductions of  
the circular lattices. 

The third way, pointed out in [14], to obtain new examples of  integrable lattices may be 

to consider quadrilateral lattices (and their reductions) in spaces over fields different from 

the field of  real numbers. In particular, geometries over Galois fields (finite geometries) 

should give rise to integrable ultradiscrete systems (integrable cellular automata). 
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